

Using the City/SAJB Groundwater Flow Model

Prepared for

Spokane Aquifer Joint Board

Prepared by

John Porcello, LHG - GSI Water Solutions April 24, 2014

SAJB Pumping Relocation Analysis

Study Objectives

- 1. How much does groundwater pumping by SAJB members currently affect flows in the Spokane River
 - → Individually and collectively
 - → Focus on peak-season (June through August)
- 2. How much benefit to river flows could arise if summer pumping is shifted to wells farther from the river?
 - → Magnitude and timing
 - → Move pumping not wells
- 3. How do the changes arising from relocation compare with the proposed in-stream flow standards?

Groundwater Model Grid (Black) and Special Wellhead Protection Areas (Colored)

City/SAJB and Bi-State Model Grids at CID-2

Groundwater Elevations and

Gaining Reaches of the Spokane River

Simulated Spokane River / Aquifer Exchanges (Average Annual Conditions)

Simulated Annual Average Groundwater Exchanges (cfs) with the		Gaging Station		Exchange
Spokane River in the City/SAJB 2012 Regional Model		Upstream	Downstream	(cfs)
Coeur d'Alene Lake to Sullivan Road	-307	Lake CDA Bed Seepage		-41
		Lake CDA	Stateline	-128
		Stateline	BAR	-63
		BAR	SUL	-75
Sullivan Road to Plantes Ferry	198	SUL	KAI	130
		KAI	ETR	57
		ETR	PLF	11
Plantes Ferry to Upriver Dam Forebay -13	12	PLF	ARG	-6
	-13	ARG	UDF	-7
Upriver Dam Tailway to Greene Street Bridge	241			
		UDT	GRE	241
Greene Street Bridge to Monroe Street Bridge	16	GRE	MIS	-1
		MIS	SIR	15
		SIR	MST	2
Western Arm of Aquifer (Below Monroe Street Bridge)	24	MST	USGS Gage	-28
		USGS Gage	TJM	-93
		TJM	BAP	-10
				4 2 2
		BAP	7ML	140
		7ML	9DF	15

Negative values indicate losing river reach.

Positive values indicate gaining river reach.

SAJB Pumping Relocation Analysis

Study Approach

- 1. Establish baseline
 - Present-day effects on river from all SAJB members
 - The portion of summer pumping rates (June-August)
 that are in excess of the year-round average rate
 - Examine effect of pumping at higher than year-round avg.

2013 Total Pumping - All SAJB Members

SAJB Pumping Relocation Analysis

Study Approach

- 1. Establish baseline
 - Present-day effects on river from all SAJB members
 - The portion of summer pumping rates (June-August) that are in excess of the year-round average rate
 - Examine effect of pumping at higher than year-round avg.
- 2. Identify members with relocation ideas
 - CID, IWD, MEWCO, PPID, Vera, WD3
- Define pumping volumes to move
 - Percentages for those not sure how much
- 4. Many model runs! Lots of spreadsheets!
 - Test aquifer parameters that control timing

2013 Total Pumping - All SAJB Members

Seasonal Increase in Pumping - All SAJB Members

Spokane River Modeled Response to Seasonal Increase in Pumping - All SAJB Members

Spokane River Modeled Response to Seasonal Increase in Pumping - Vera

Spokane River Modeled Response to Seasonal Increase in Pumping - Vera

Vera Water & Power (No Relocation)

(Distribution Of Summer Pumping Already Optimal)

Irvin Water District

(Move From Cement Well 5 To Montgomery Well 4) (Move Up To 0.35 cfs = 10% Of Peak Pumping)

Spokane River Modeled Response to Seasonal Increase in Pumping - All SAJB Members

Spokane River Modeled Response to Seasonal Increase in Pumping - IWD

Spokane River Modeled Response to Seasonal Increase in Pumping - IWD

Spokane River Modeled Response to Seasonal Increase in Pumping - IWD

Change in Spokane River Modeled Response to Seasonal Pumping Relocation - IWD

Moving Pumping Away from Well Adjacent to Gaining Reach = Notable Benefit to River

Irvin Water District

(Move From Cement Well 5 To Montgomery Well 4) (Move Up To 0.35 cfs = 10% Of Peak Pumping)

Pasadena Park Irrigation District (Move From Well 5 To Well 3) (Move Up To 0.2 cfs = 2.3% of Well 5 Peak Pumping)

Spokane River Modeled Response to Seasonal Increase in Pumping - All SAJB Members

Spokane River Modeled Response to Seasonal Increase in Pumping - PPID

Spokane River Modeled Response to Seasonal Increase in Pumping - PPID

Spokane River Modeled Response to Seasonal Increase in Pumping - PPID

Change in Spokane River Modeled Response to Seasonal Pumping Relocation - PPID

Pasadena Park Irrigation District (Move From Well 5 To Well 3) (Move Up To 0.2 cfs = 2.3% of Well 5 Peak Pumping)

Consolidated Irrigation District (Move From Well 1 To Well 2) (Move 0.5 cfs = 10% Of May Pumping at Well 1)

Spokane River Modeled Response to Seasonal Increase in Pumping - All SAJB Members

Spokane River Modeled Response to Seasonal Increase in Pumping - CID

Spokane River Modeled Response to Seasonal Increase in Pumping - CID

Spokane River Modeled Response to Seasonal Increase in Pumping - CID

Change in Spokane River Modeled Response to Seasonal Pumping Relocation - CID

Moving Pumping Away from Well Adjacent to Gaining Reach = Notable Benefit to River

Consolidated Irrigation District (Move From Well 1 To Well 2) (Move 0.5 cfs = 10% Of May Pumping at Well 1)

Modern Electric Water Company

(Move From Wells 6, 8, & 11 To Wells 4 & 7)

(Move Up To 1.6 cfs = 9% Of Peak Pumping)

Spokane River Modeled Response to Seasonal Increase in Pumping - All SAJB Members

Spokane River Modeled Response to Seasonal Increase in Pumping - MEWCO

Spokane River Modeled Response to Seasonal Increase in Pumping - MEWCO

Spokane River Modeled Response to Seasonal Increase in Pumping - MEWCO

Change in Spokane River Modeled Response to Seasonal Pumping Relocation - MEWCO

Modern Electric Water Company

(Move From Wells 6, 8, & 11 To Wells 4 & 7)

(Move Up To 1.6 cfs = 9% Of Peak Pumping)

Spokane County Water District 3 (Move From Freeway & Vista To Koren) (Move Up To 4.0 cfs = 20% Of Eastern System Peak)

Spokane River Modeled Response to Peak-Season Pumping - All SAJB Members

Spokane River Modeled Response to Seasonal Increase in Pumping - WD3

Spokane River Modeled Response to Seasonal Increase in Pumping - WD3

Spokane River Modeled Response to Seasonal Increase in Pumping - WD3

Change in Spokane River Modeled Response to Seasonal Pumping Relocation - WD3

Change in Spokane River Modeled Response to Seasonal Pumping Relocation - WD3

- 1. Temporary increases in pumping near river offset benefits of relocation at other times.
- 2. Relocating farther from river but closer to gaining reach can reduce benefits of relocation.

Spokane County Water District 3 (Move From Freeway & Vista To Koren) (Move Up To 4.0 cfs = 20% Of Eastern System Peak)

Change in Spokane River Modeled Response to Seasonal Pumping Relocation - WD3

Change in Spokane River Modeled Response to Seasonal Pumping Relocation CID + IWD + MEWCO + PPID + WD3

Change in Spokane River Modeled Response to Seasonal Pumping Relocation CID + IWD + MEWCO + PPID + WD3

SAJB Pumping Relocation Analysis

Study Conclusions

- 1. How much does groundwater pumping by SAJB members currently affect flows in the Spokane River
 - → Individually and collectively
 - → Focus on peak-season (June through August)

Current Conditions- Sorted by Purveyor

	SAJB Groundwater Pumping (cfs)			Effect of Peak-Season Pumping on River			
		Peak Peak Month River Flow		Reduction as % of Pumping			
SAJB Member	Average	Month	minus Average	Reduction (cfs)	Min to Max	Average	
MUNICIPAL PROVIDERS							
Carnhope Irr. Dist.	0.76	1.76	0.99	0.5 to 0.8	50% to 81%	65%	
Consolidated Irr. Dist.	15.74	47.63	31.90	8.6 to 14.1	27% to 44%	36%	
City of Spokane	93.04	213.99	120.95	63 to 84	52% to 69%	61%	
East Spokane Water Dist.	2.31	5.31	3.00	1.3 to 2.1	43% to 70%	57%	
Hutchinson Irr. Dist.	3.12	7.17	4.05	1.5 to 2.7	37% to 67%	52%	
Irvin Water Dist.	1.17	3.71	2.53	2.1 to 2.4	83% to 95%	89%	
Liberty Lake Sewer & Water Dist.	3.89	8.95	5.06	1.0 to 1.8	20% to 36%	28%	
City of Millwood	8.20	17.18	8.98	3.2 to 6.0	36% to 67%	51%	
Moab Irr. Dist.	1.43	3.30	1.86	0.2 to 0.4	11% to 21%	16%	
Model Irr. Dist.	3.37	7.76	4.38	1.4 to 2.8	32% to 64%	48%	
Modern Electric Water Co.	4.72	17.68	12.97	5.0 to 8.8	39% to 68%	53%	
North Spokane Irr. Dist.	1.16	2.67	1.51	0.3 to 0.6	20% to 40%	30%	
Orchard Irr. Dist.	4.36	10.04	5.67	2.3 to 3.9	41% to 69%	55%	
Pasadena Park Irr. Dist.	1.83	8.41	6.58	2.4 to 4.4	36% to 67%	52%	
Spokane Co. Water Dist. 3	8.47	27.67	19.20	6.0 to 10.8	31% to 56%	44%	
Trentwood Irr. Dist.	3.09	7.11	4.02	2.2 to 2.9	55% to 72%	63%	
Vera Water & Power	6.06	22.48	16.42	6.3 to 10.5	38% to 64%	51%	
Whitworth Water Dist.	7.31	16.81	9.50	1.4 to 2.1	15% to 22%	18%	
Total (municipal providers)	170.05	429.64	259.59	108.7 to 161.1	42% to 62%	52%	
OTHER MEMBERS							
Total (others)	15.92	36.63	20.70	10.4 to 12.3	50% to 59%	55%	
GRAND TOTAL	185.97	466.26	280.29	119.1 to 173.4	42% to 62%	52%	

Current Conditions – Sorted by Effect

	SAJB Groundwater Pumping (cfs)		Effect of Peak-Season Pumping on River			
	Peak Peak Month		River Flow Reduction as % of Pu		Pumping	
SAJB Member	Average	ge Month minus Average Reduction (cfs		Reduction (cfs)	Min to Max	Average
MUNICIPAL PROVIDERS						
Irvin Water Dist.	1.17	3.71	2.53	2.1 to 2.4	83% to 95%	89%
Carnhope Irr. Dist.	0.76	1.76	0.99	0.5 to 0.8	50% to 81%	65%
Trentwood Irr. Dist.	3.09	7.11	4.02	2.2 to 2.9	55% to 72%	63%
City of Spokane	93.04	213.99	120.95	63 to 84	52% to 69%	61%
East Spokane Water Dist.	2.31	5.31	3.00	1.3 to 2.1	43% to 70%	57%
Orchard Irr. Dist.	4.36	10.04	5.67	2.3 to 3.9	41% to 69%	55%
Modern Electric Water Co.	4.72	17.68	12.97	5.0 to 8.8	39% to 68%	53%
Hutchinson Irr. Dist.	3.12	7.17	4.05	1.5 to 2.7	37% to 67%	52%
Pasadena Park Irr. Dist.	1.83	8.41	6.58	2.4 to 4.4	36% to 67%	52%
City of Millwood	8.20	17.18	8.98	3.2 to 6.0	36% to 67%	51%
Vera Water & Power	6.06	22.48	16.42	6.3 to 10.5	38% to 64%	51%
Model Irr. Dist.	3.37	7.76	4.38	1.4 to 2.8	32% to 64%	48%
Spokane Co. Water Dist. 3	8.47	27.67	19.20	6.0 to 10.8	31% to 56%	44%
Consolidated Irr. Dist.	15.74	47.63	31.90	8.6 to 14.1	27% to 44%	36%
North Spokane Irr. Dist.	1.16	2.67	1.51	0.3 to 0.6	20% to 40%	30%
Liberty Lake Sewer & Water Dist.	3.89	8.95	5.06	1.0 to 1.8	20% to 36%	28%
Whitworth Water Dist.	7.31	16.81	9.50	1.4 to 2.1	15% to 22%	18%
Moab Irr. Dist.	1.43	3.30	1.86	0.2 to 0.4	11% to 21%	16%
Total (municipal providers)	170.05	429.64	259.59	108.7 to 161.1	42% to 62%	52%
OTHER MEMBERS						
Total (others)	15.92	36.63	20.70	10.4 to 12.3	50% to 59%	55%
GRAND TOTAL	185.97	466.26	280.29	119.1 to 173.4	42% to 62%	52%

SAJB Pumping Relocation Analysis

Study Conclusions

- 2. How much benefit to river flows could arise if summer pumping is shifted to wells farther from the river?
 - → Magnitude and timing; and moving pumping (not wells)

	Peak Influence on River	Benefit Relative to Pumping		
SAJB Member	Min cfs to Max cfs	Min to Max		
CID	Assume zero June-August	34% to 36%		
MEWCO	0.05 to 0.06	3% to 4%		
Irvin	0.16 to 0.18	46% to 51%		
PPID	0.009 to 0.012	4% to 6%		
WD3	0.58 to 0.81	23% to 26%		
Total	0.90 to 1.06	09/ +a 129/		
Influence	0.80 to 1.06	9% to 13%		

Values are heavily dependent on:

- 1. Amount of pumping being moved (the tabulated results are for moving 6.2 cfs)
- 2. The distance that pumping is being moved away from gaining reaches

Potential Benefits to River

	Distance (m	iles) from Ga	Benefit Relative to Pumping	
SAJB Member	Before	After	After/Before	Min to Max
WD3	2.2	1.6	0.7	23% to 26%
PPID	2.0	1.5	0.8	4% to 6%
MEWCO	1.4	2.0	1.4	3% to 4%
	1.1	2.0	1.8	
	1.4	2.7	1.9	
Irvin	0.2	0.6	3.0	46% to 51%
CID	0.5	2.1	4.2	34% to 36%
Total				9% to 13%
Influence				9% 10 13%

Benefit to River as a Function of Relative Distance that Pumping is Moved Away from Gaining Reaches

Potential Benefits to River

	Distance (m	iles) from Gai	Benefit Relative to Pumping	
SAJB Member	Before	After	After/Before	Min to Max
Irvin	0.2	0.6	3.0	46% to 51%
CID	0.5	2.1	4.2	34% to 36%
MEWCO	1.1	2.0	1.8	3% to 4%
	1.4	2.0	1.4	
	1.4	2.7	1.9	
PPID	2.0	1.5	0.8	4% to 6%
WD3	2.2	1.6	0.7	23% to 26%
Total				00/ += 120/
Influence				9% to 13%

Benefit to River as a Function of Initial Distance of Wells from Gaining Reaches

SAJB Pumping Relocation Analysis

Study Conclusions

3. How do the changes arising from relocation compare with the proposed instream flow standards?

Proposed Instream Flow Standard:

- June 15 Sept 30: 850 cfs
- August historical flows = 525 to 700 cfs
 (90% exceedance probability)
- Deficit = 150 to 325 cfs

Published Exceedance Curves for Flows in the Spokane River

Figure 4. Exceedence hydrographs and recommended instream flows at USGS gauge 12422500 (Spokane River at Spokane). Source: 2012 Instream Flow Recommendations for the Spokane River (Hal Beecher, WDFW, May 31, 2012)

SAJB Pumping Relocation Analysis

Study Conclusions

3. How do the changes arising from relocation compare with the proposed in-stream flow standards?

Proposed Instream Flow Standard:

- June 15 Sept 30: 850 cfs
- August historical flows = 525 to 700 cfs
 (90% exceedance probability)
- Deficit = 150 to 325 cfs

Relocation Scenarios Examined:

- Move 6.2 cfs for 3 months
- Effect on river is 0.8 to 1.1 cfs
 - Nominally 0.25% to 0.75% of the 150 to 325 cfs deficit in flow

Discussion, Questions

John J. Porcello, LHG

with assistance from Walt Burt, Phil Brown, Jake Gorski GSI Water Solutions (503) 239-8799

