Proposed Groundwater Model Conversion and Update (2024)

Prepared for Spokane Aquifer Joint Board Prepared by John Porcello, LHG November 16, 2023

Topics

Objectives

- Study methods (scope of work)
 - Groundwater flow model setup
 - Wellhead protection update
 - Climate-change analysis
 - Documentation
- Details of the budget estimate
- Recent City of Spokane work
 - Provides a starting point in two regards
 - New groundwater flow model
 - Climate-change study (nearing completion)

Objectives

- 1. Update wellhead protection area capture zones to incorporate 20+ years of information obtained since the original capture zones were delineated in the late 1990s
 - Changes to well network
 - Improved understanding of lithology and aquifer properties in the eastern portion of the City of Spokane
 - Aguifer and river studies
 - SAJB, City of Spokane, USGS, Idaho DWR
 - Improved groundwater modeling tools

Objectives

- 2. Use new climate models and a groundwater model to understand implications of growth and climate change on groundwater levels and pumping capacities in individual wells
 - Climate projections show changes in:
 - Natural recharge to aquifer
 - Temperatures and length of growing season (which affects demands)
 - Many wells are shallow, with little room to maintain yields if water levels decline
 - Particular concern in summer

Step 1

- Develop an updated groundwater flow model
 - Use knowledge from prior modeling studies (SAJB, City, USGS)
 - Use new software, with refined gridding and layering
 - MODFLOW-USG (the core groundwater modeling code)
 - Groundwater Vistas (graphical user interface)
 - Regional-scale calibration to data from prior studies
 - Spokane River gains/losses
 - Groundwater elevation contours
 - First step to a modern model; not the model to end all models

Status: Essentially completed (by City of Spokane) Key Assumption: Model is sufficiently calibrated for use by SAJB

Remaining Work: Conduct grid refinements at SAJB wells

Step 2

- Change hydrologic inputs in the groundwater flow model using published climate change factors from a publicly available source (<u>https://climatetoolbox.org</u>)
 - Simulate multiple possibilities for the period 2070-2099
 - Low and high scenarios for future greenhouse gas emissions
 - RCP 4.5: a somewhat optimistic scenario (emissions decline by ~2050)
 - RCP 8.5: a pessimistic scenario ("business as usual")
 - Low, medium, and high amounts of change for each emissions scenario
 - Simulate changes to the aquifer and to monthly demands
 - Climate-change influences on aquifer recharge terms
 - Climate-change influences on timing and magnitude of monthly demand curve
 - Increased demand (50-year projections)

Status: Completed (by City of Spokane)

Remaining Work: Develop pumping demand details for each SAJB member well

GSI Water Solutions, Inc.

Step 3

- Run the groundwater flow model with climate change applied to the aquifer and to the demand curve, then analyze results against baseline (current) conditions
 - Total of 7 simulations
 - Baseline = Current conditions (2015-2020 average)
 - Six climate-change scenarios
 - The comparison of each climate-change scenario to baseline conditions evaluates the effect of three influences:
 - Increased demand due to growth
 - Climate-influenced changes on seasonal demands
 - Climate-influenced changes in the aquifer and Spokane River

Status: City of Spokane has defined two critical inputs

- Climate-change inputs for aquifer recharge and Spokane River
- 50-year demand projection for City of Spokane wells (with climate change)

Remaining Work: For all SAJB member wells

- Define 50-year demand (with climate change)
- Run and analyze model results for all SAJB member wells

Step 4

- Select a simulation to use for conducting updated delineations of wellhead protection areas
- Use same delineation approach and methods as before
 - Pumping rates are based on annual water rights volume
 - Delineate Special Wellhead Protection Areas (SWHPAs) for a travel time of 1 year multiplied by an importance factor
 - The importance factors are related to the response time to a contamination event:
 - Importance factor = Response Time in Months / 12 months
 - Ranges in value from 0.1 to 5.0
 - Original delineations used 15 scenarios for importance factors
 - Three types of well uses (primary, secondary, or peaking supply)
 - Availability of water from other purveyors (via interties)
 - Ability of distribution system to accommodate higher flow at specific wells

Importance Factor Table (Derivation in 1990s)

TABLE 1

Methodology and Rationale for Response Times and Importance Factors SAJB Wellhead Protection Program

Scenario	Well Use ^(a)	Is The Necessary Flow Obtainable From Other Wells? ^(b)	Can The Necessary Flow Be Obtained From Other Purveyors? ^(c)	Distribution System Capabilities ^(d)	Response Time or Planning Time (months)	Importance Factor ^{(e}
1	Primary	Yes		Capable	<u><</u> 12	1.0
2	Primary	Yes		Limited	12 - 36	1.0 - 3.0
3	Primary	Yes		Incapable	24 - 60	2.0 - 5.0
4	Primary	No	No	Limited or Incapable	24 - 60	2.0 - 5.0
5	Primary	No	Yes	Capable	12 - 24	1.0 - 2.0
6	Secondary	Yes		Capable	9 - 12	0.75 - 1.0
7	Secondary	Yes		Limited	12 - 36	1.0 - 3.0
8	Secondary	Yes		Incapable	24 - 60	2.0 - 5.0
9	Secondary	No	No	Limited or Incapable	18 - 60	1.5 - 5.0
10	Secondary	No	Yes	Capable	6 - 12	0.5 - 1.0
11	Peaking	Yes		Capable	3 - 6	0.25 - 0.5
12	Peaking	Yes		Limited	6 - 36	0.5 - 3.0
13	Peaking	Yes		Incapable	12 - 36	1.0 - 3.0
14	Peaking	No	No	Limited or Incapable	6 - 36	0.5 - 3.0
15	Peaking	No	Yes	Capable	1 - 12	0.1 - 1.0

Footnotes to Importance Factor Table

(a) Well uses are defined as follows:

- Primary: Used on a year-round (or nearly year-round) basis Secondary: Helps with summer peak demands, but also used at other times. Peaking: Used exclusively for peak demand periods.
- (b) It is assumed that the lost pumping volume needs to be replaced.
- (c) Dashes indicate that this question is not relevant (i.e., capacity is available at other wells). "Yes" entry assumes that agreements and facilities are in place and that supply is available.
- (d) Distribution system capabilities are defined as follows:
 - Capable: Pumping loss at this well can be replaced by pumping from another well without exceeding capacity of distribution system at other wells.
 - Limited: Pumping increases may not be possible at other wells without exceeding capacity of distribution system. May depend on season during which pumping needs to be increased at other wells.

Incapable: System would require capital improvements before increasing pumping at other wells.
(e) Equals response time divided by one year.

Step 5

- Documentation
 - WHP Updates: Technical memorandum
 - Provides documentation for SAJB members and DOH
 - Climate change analysis: Presentation
 - Assume presentation is sufficient (cost savings by avoiding a technical memorandum)

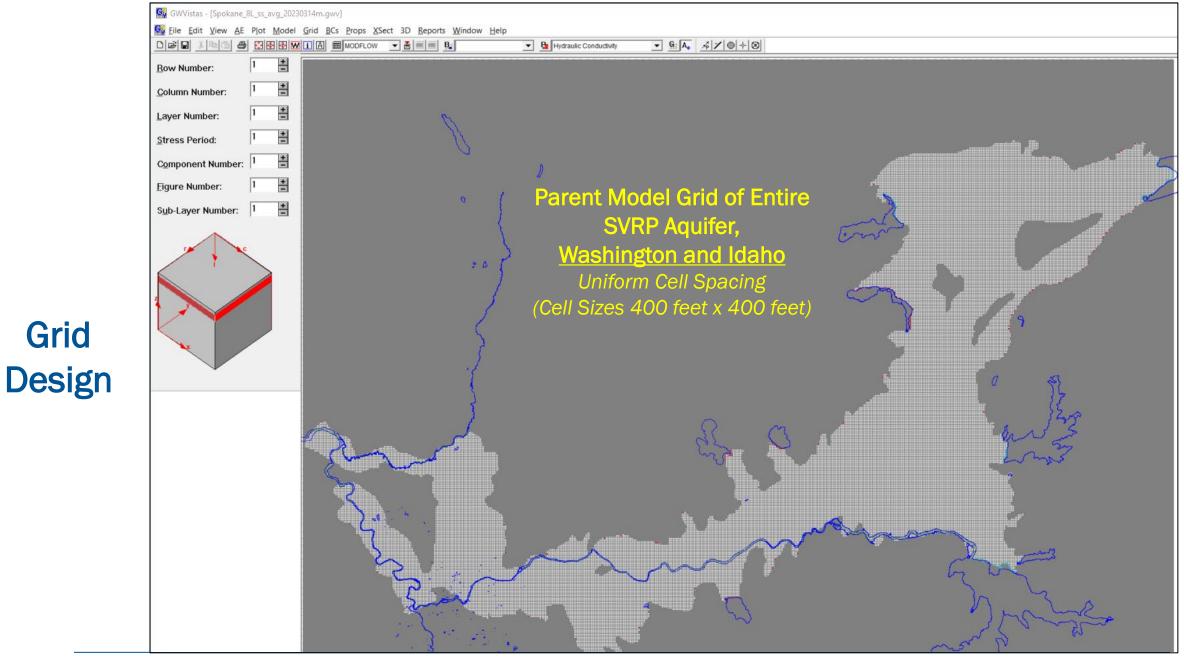
Cost Estimate Details (For Budget Planning Purposes)

Four tasks

- 1. Data gathering
- 2. Model simulations
 - Setting up and running 7 simulations
 - Baseline conditions
 - 6 different climate scenarios
 - Analyzing climate change model results
 - Updating SWHPAs (using 1 simulation)
- 3. Presentation of results
- 4. SWHPA delineation report

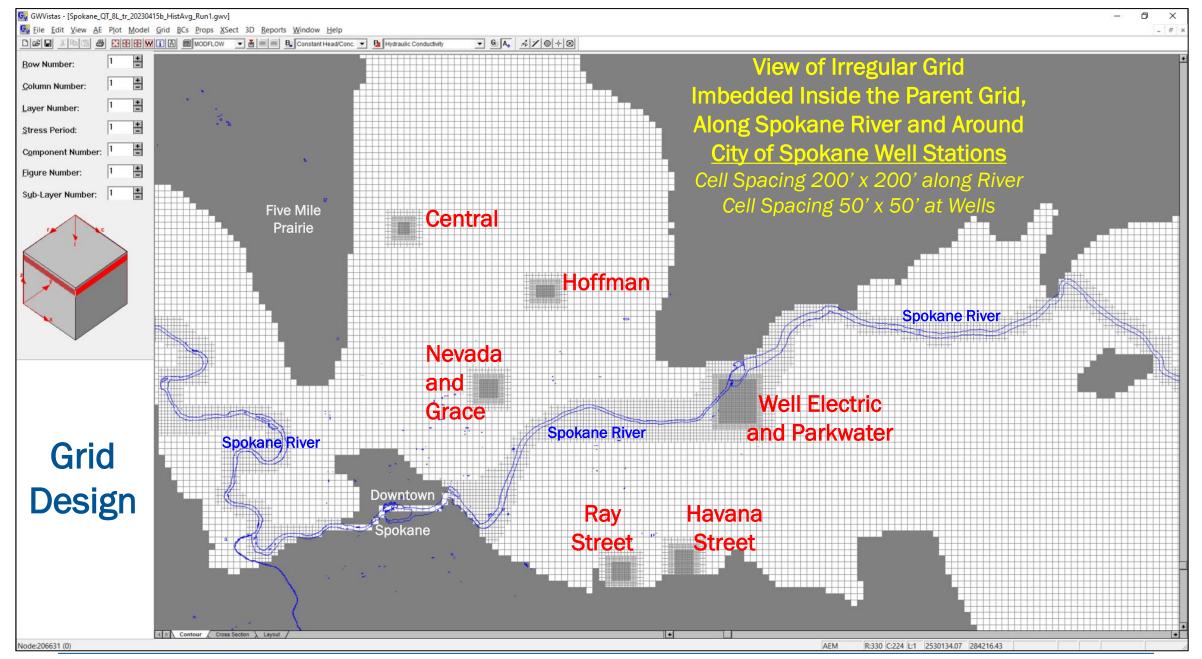
Cost Estimate Details (For Budget Planning Purposes)

Estimated cost: \$75,000

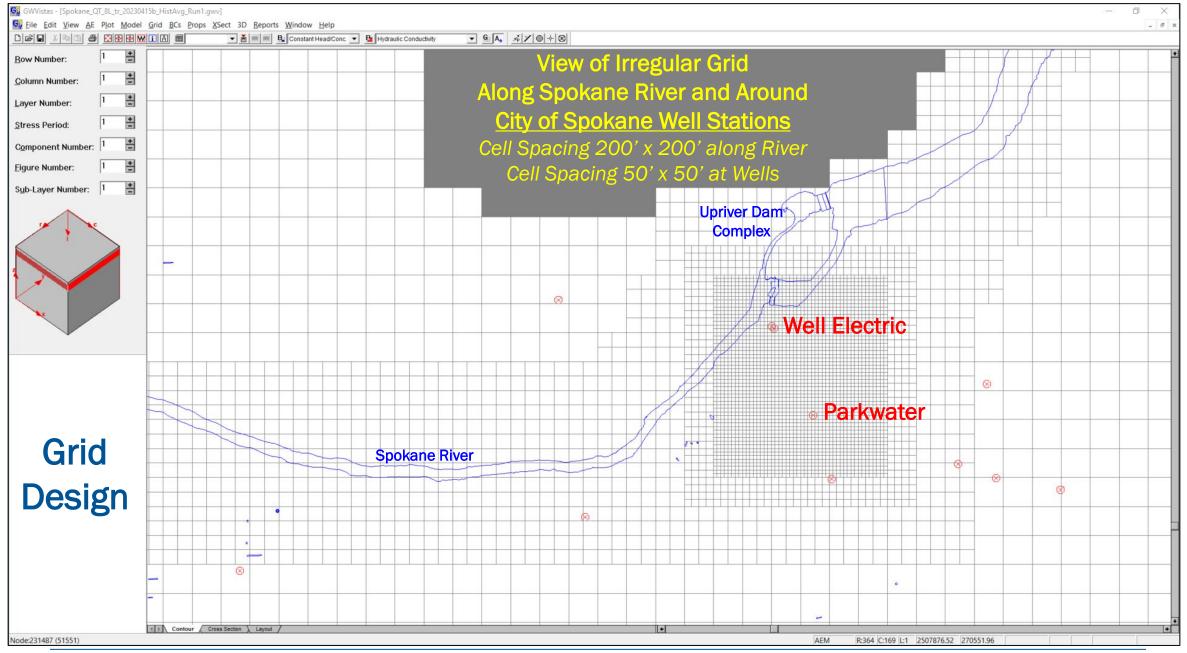

Activity	Estimated Cost
Data gathering, deciding on importance factors	\$9,000
Set up, run, and QC flow simulations (7 model runs)	\$20,000
Delineate SWHPAs	\$10,000
Analyze climate-change effects on production wells	\$14,000
Presentation of results	\$7,000
SWHPA delineation report	\$15,000
Total	\$75,000

Without the work already conducted by the City of Spokane, the cost would be ~\$40,000 greater

Background/Supporting Information


Groundwater Flow Model Development Activities Conducted to Date

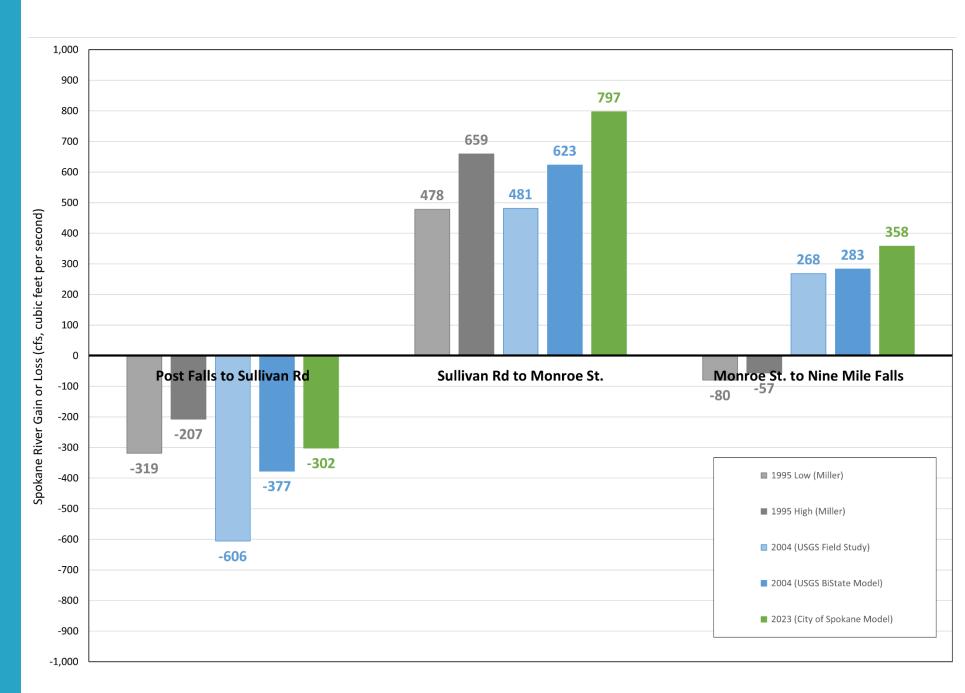
(Grid Design, Model Calibration)



GSI Water Solutions, Inc.

Grid

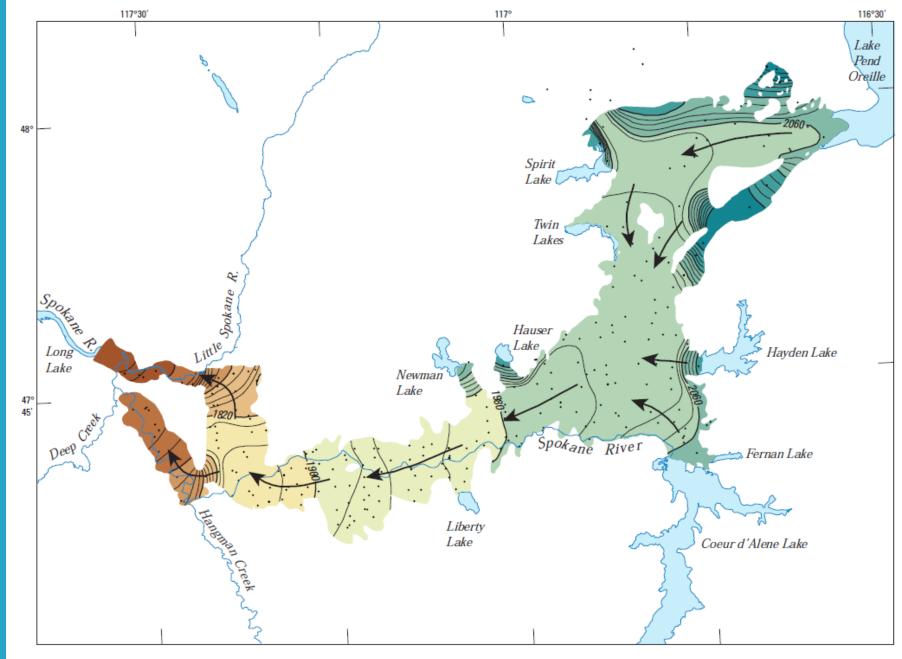
GSI Water Solutions, Inc.



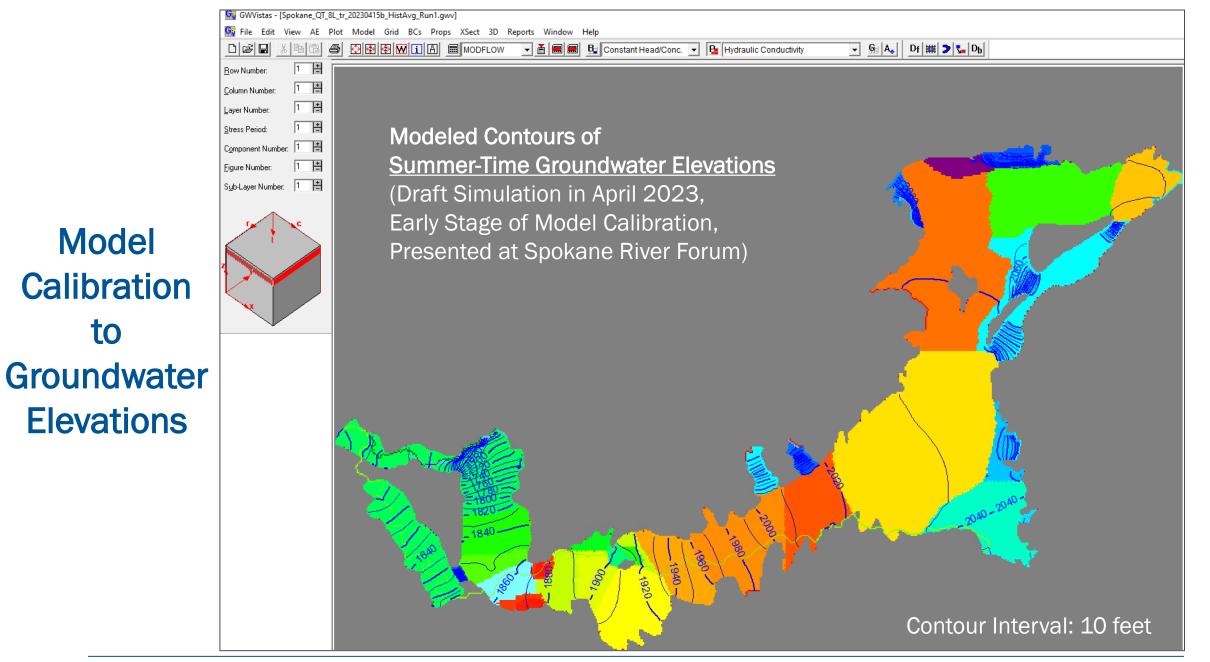
GSI Water Solutions, Inc.

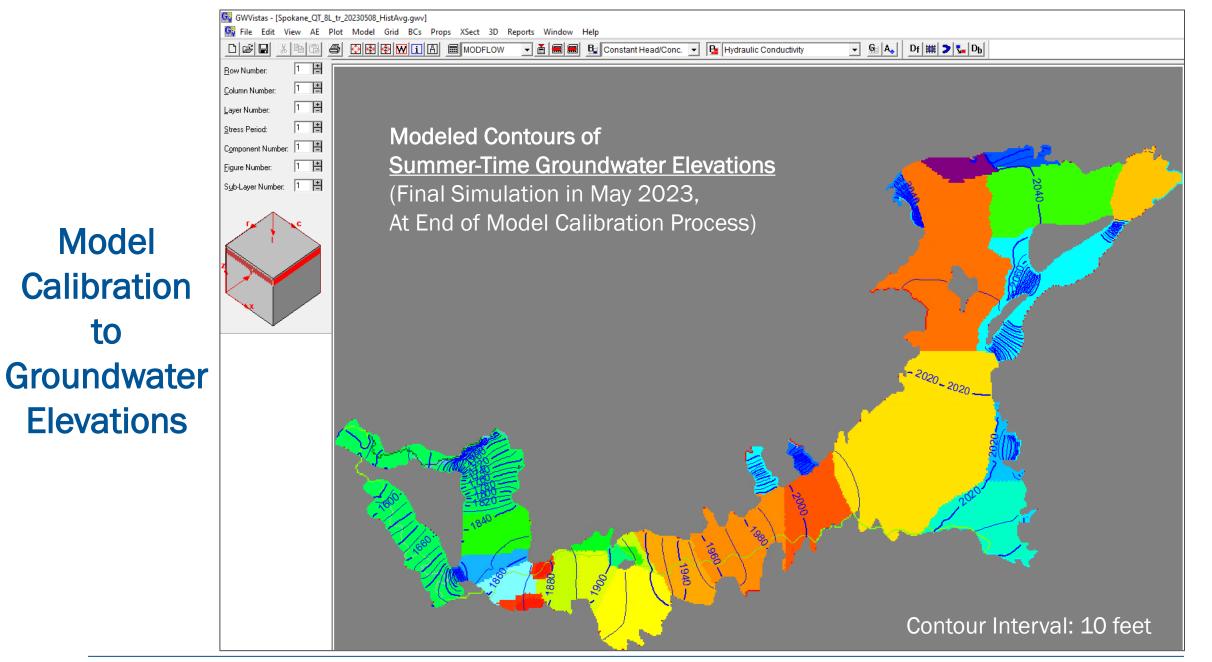
Model Calibration to Spokane River Gains/ Losses (cfs) During Low-Flow Month (August)

Reach	April 2023 Version of New City Model	May 2023 Version of New City Model	USGS Bi-State Model: Losses for Sept 2004	USGS Field- Measured Losses for Sept 2004	Miller 1995 Field Study
Post Falls to Sullivan Road	-409	-302	-377	-606	-207 to -319
Sullivan Road to Greene Street	+905	+760	+602	+593	+415 to +537
Greene Street to Monroe Street	+278	+37	+623	-112	+63 to +122
Monroe Street to 9-Mile Falls	+103	+358	+283	+268	-57 to -80


Model Calibration to Spokane **River** Gains/ Losses (cfs) During Low-Flow Month (August)

USGS Published Map of Groundwater Elevation Contours (Field Data) (September 2004)


Source:


Kahle, S.C., and Bartolino, J.R., 2007. Hydrogeologic Framework and Ground-Water Budget of the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. U.S. Geological Survey Scientific Investigations Report 2007-5041, 48 p., 2 pls.

Contour Interval: 20 feet

GSI Water Solutions, Inc.

